Parity-Dependent Rotational Energy Transfer in CN(A2Π, ν = 4, jF1ε) + N2, O2, and CO2 Collisions
نویسندگان
چکیده
We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A(2)Π, ν = 4, j F1ε) with N2, O2, and CO2. CN(X(2)Σ(+)) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A(2)Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A-X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump-probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j' F1e and j' F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin-orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study ( Khachatrian et al. J. Phys. Chem. A 2009 , 113 , 3922 ). Our results with CO2 as a collider are similarly in strong disagreement with a related experimental study ( Khachatrian et al. J. Phys. Chem. A 2009 , 113 , 13390 ). We therefore propose that the previous experiments substantially underestimated the spin-orbit-changing cross sections for collisions with both N2 and CO2, suggesting that even approximate quantum scattering calculations may be more successful for such molecule-molecule systems than was previously concluded.
منابع مشابه
Parity-dependent oscillations in collisional polarization transfer: CN(A²Π, v = 4) + Ar.
We report the first systematic experimental and theoretical study of the state-to-state transfer of rotational angular momentum orientation in a (2)Π-rare gas system. CN(X(2)Σ(+)) was produced by pulsed 266 nm photolysis of ICN in a thermal bath (296 K) of Ar collider gas. A pulsed circularly polarized tunable dye laser prepared CN(A(2)Π, v = 4) in two fully state-selected initial levels, j = 6...
متن کاملPair-correlated stereodynamics for diatom-diatom rotational energy transfer: NO(A2Σ+) + N2.
We have performed a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with N2 and have measured rotational angular momentum polarization dependent images of product NO(A) rotational levels N' = 3 and 5-11 for collisions at an average energy of 797 cm-1. We present an extension of our previously pub...
متن کاملThe calculation of TV , VT , VV , VV 0 ± rate coe cients for the collisions of the main atmospheric components
The ®rst-order perturbation approximation is applied to calculate the rate coecients of vibrational energy transfer in collisions involving vibrationally excited molecules in the absence of non-adiabatic transitions. The factors of molecular attraction, oscillator frequency change, anharmonicity, 3-dimensionality and quasiclassical motion have been taken into account in the approximation. The ...
متن کاملDepolarization of rotational angular momentum in CN(A2Π, v = 4) + Ar collisions.
Angular momentum depolarization and population transfer in CN(A(2)Π, v = 4, j, F(1)e) + Ar collisions have been investigated both experimentally and theoretically. Ground-state CN(X(2)Σ(+)) molecules were generated by pulsed 266-nm laser photolysis of ICN in a thermal (nominally 298 K) bath of the Ar collision partner at a range of pressures. The translationally thermalized CN(X) radicals were ...
متن کاملVibrationally inelastic scattering of high- n Rydberg H atoms from N2 and O2.
The vibrationally inelastic scattering of Rydberg H atoms (n = 30-50) from N2 and O2 at E(coll) = 1.84 eV was studied as a function of laboratory deflection angle. On average, 4 times more vibrational excitation was observed in collisions with O2 than with N2. Vibrational excitation of O2 results largely from collisions in which an electron is briefly transferred from O2 to the proton core, whi...
متن کامل